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i. 

V ABSTRACT 

A 
The problem of predicting the behavior of the incompressible turbu- 

lent boundary layer in an adverse pressure gradient is re-examined. An 

outline of the problem is given along with a brief summary of the work 

that has already been done, including both experimental correlations and 

approximate theories. The results of an experimental investigation are 

presented for a separating turbulent boundary layer with various pres- 

sure distributions. An approximate theory is developed in which the 

momentum integral equation is satisfied for each half of the boundary 

layer. The velocity profiles used in the analysis consist of the well 

known wall and wake regions, resulting in a two-parameter family with the 

Reynolds number as one parameter. It is assumed, with some experimental 

justification, that the eddy viscosity can be reasonably approximated 

from zero pressure gradient experiments. The numerical calculations, 

using the Runge-Kutta procedure, show good agreement with the experi- 

ments. Finatty, the reliability that can be expected of such approxim- 

ate methods is discussed, a^ tibfi UPfej^i:^.»^ "dM^^w--4ti<>.-..4wM»t>tia.i»nt,.,chpnr 

7 stres« is examined for several general cases. 
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NOMEWCIATURE 

c Skin friction coefficient, xj ö" P^ 
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R- Reynoldsi number based on 9 , Uö/y 

Rj Reynolds' number based on S , Us/y 
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T Time 

U Free stream velocity 

ut Friction velocity, yt^P 

u Component of velocity parallel to the wall (time average) 

u' Component of velocity parallel to the wall (fluctuating) 

v Component of velocity normal to the wall (time average) 

v1 Component of velocity normal to the wall (fluctuating) 

w Wake function (equations 1*9 and 5o) 
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y Distance normal to the wall 

z Distance normal to x and y 

a Boundary layer parameter (equations 57 and 58) 

ß Boundary layer parameter (equations 58 and 59) 

1 Form parameter (equation 19) 

S Boundary layer thickness 

8 Displacement thickness (equation 8) 
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P Density 
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i.  iiraRODücnoN 

The behavior of the turbulent boundary layer in an adverse pressure 

gradient is probably one of the most important and also one of the most 

difficult problems in fluid mechanics. Almost all devices involving fluid 

flow, such as pumps, compressors, diffusers, airfoils and submerged bodies, 

depend critically upon this behavior. The effort that has been expended 

on this one problem gives evidence of the difficulty as well as the im- 

portance . 

The boundary layer concept was introduced in 190ii by L. Prandtl, who 

demonstrated that in many cases fluid flow could be divided into an essen- 

tially inviscid region and a thin viscous region near a solid surface. 

Although there are some exceptions, the inviscid flow theory is fairly 

complete. Because the viscous layer is relatively thin, the equations 

of motion can be simplified considerably in this region. However, much 

of the boundary layer theory that has been developed is for laminar flow, 

where a mathematical approach is at least possible, but in most applic- 

ations the flow is turbulent. 

In an adverse pressure gradient the fluid very near the solid sur- 

face that has been retarded by viscous forces quickly loses its remaining 

momentum. When this happens the boundary layer is likely to separate, 

or stall, and completely change the flow. The loss of momentum by the 

fluid near the wall, then, is the significant factor in the behavior of 

the boundary layer. Because of the mixing motion, the rate of transfer 

of momentum to the inner layers is much greater in turbulent flow, and 

separation is usually delayed relative to the laminar case. 

Turbulent shear flow, however, is not amenable to a completely math- 

ematical analysis. In order to proceed at all, the theory must depend 

on some empirical information. Because of the complexity of the flow 
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and the difficulty in measuring turbulent quantities, especially the shear 

stress, this empirical information is the essential difficulty in any anal- 

ysis. Since there are slight differences in each case, such as irregular- 

ities in the wall, an average value of turbulent quantities can only be 

expected to hold within limits. In an adverse pressure gradient these 

difficulties are greatly amplified. Near separation the pressure is af- 

fected by the boundary layer, which is in turn critically dependent upon 

the pressure. 

It should be emphasized that boundary layer theory alone can only 

be used up to separation, and because of the approximations cannot be 

very reliable in this region. For this reason, separation is not always 

predictable from boundary layer calculations, and a study of separated 

flow must include the geometry. 

Even in the face of all these difficulties, the behavior of a turbu- 

lent boundary layer does appear to be predictable within limits. A large 

amount of work has been done in developing empirical methods of predicting 

this behavior, and undoubtedly more will be done in the future. Just how 

useful these methods are at present is largely a matter of opinion, but 

it can hardly be doubted that more work is needed. After a somewhat crit- 

ical discussion concerning the present theories, Clauser  concludes that 

"the field is still wide open for the advent of a reliable method for pre- 

dicting the behavior of turbulent layers under the influence of pressure 

gradients". 

In attempting to improve the existing methods, however, it must be 

realized that some assumptions or empirical correlations must be made. 

Improvements can only be made through these assumptions, which are lim- 

ited by the present understanding of turbulent shear flow. But it is quite 

likely that some improvements can be made without a great deal more quan- 

titative knowledge of the mechanism that is really involved. 
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Perhaps what is even more desirable at this point is some idea of 

just how reliable such approximate methods are. Does their reliability 

justify their use in applications, or should designers continue to use 

somewhat conservative rules, such as the maximum lift coefficient for 

airfoils and the pressure rise for diffusers? 

The objective of the present work, then, will be to examine just 

what assumptions must be made, improve them as far as possible, estimate 

the uncertainty involved, and finally, determine to what extent this un- 

certainty affects the final result. 

II. REVIEW OF THE PROBLEM 

Because of the complexity of turbulent flow, it is convenient to 

separate the velocity into mean and fluctuating components, as suggested 

by 0. Reynolds. In the two-dimensional case the component of velocity 

parallel to the wall is written 

u(x, y, t) = ü(x, y) + u'ix,  y, t) (l) 

where „ - m 

"'^ IT udt   and I- •dt = 0 
and similarly the component of velocity perpendicular to the wall 

v(x, y, t) = v(x, y) + v'Cx, y, t) (2) 

For convenience the bar is omitted from the mean, or time average, 

components, which are then written as simply u and v. 

Substituting these velocities into the equations of motion and aver- 

aging with respect to time results in additional terms, which are the 

Reynolds stresses. The additional terms are, unfortunately, unknown with 

no further equations. This fundamental difficulty has so far limited the 

theoretical approach to turbulent flow, and forced the analysis to rely 

on experimental results. 
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(a) Basic Equations 

The derivation of the turbulent boundary layer equations can be found 

in many books dealing with the subject (Refs. 2 - 7) so they will simply 

be listed here in their two-dimensional form, 

x-momentum 

u^+ v^i=--^ + y^h- 5u,2- 5u'v' 
3y P 

äx  öT
2
  öX  ay sx 

y-momentum 

öy2 

o = . i^£.ll 
p ay  ay 

continuity 

3x  dy 

.2 

(3) 

(1*0 

(5) 

2   2      2 where pu1 , pv* and pu'v' are the Reynolds stresses. The term pu' 

is the average flow of x-momentum, due to the turbulent motion, through 

a surface normal to the x-direction and is therefore interpreted as a 

normal stress. The term pu'v' is the flow of x-momentum through a sur- 

face parallel to the x-direction and Is interpreted as a tangential, or 

shear stress. 

The Reynolds normal stress is relatively small compared to the other 

terms in equation (.3) and is usually neglected. (The Importance of the 

normal stress will be discussed In part (d).) In this case the pressure 

can be assumed constant across the thin boundary layer, at least when 

the longitudinal curvature is small. Except in the viscous region very 

2   2 
near the wall, the term r 3 u/ay  is also relatively small. 

Since the details of the turbulent flow are extremely complicated 

and the Reynolds stresses are unknovn, it is usually advantageous to 

integrate equation (3) across the boundary layer. Neglecting the normal 

stress for the present, equation (3) can be Integrated (see Refs. 2 and 

3 for example). 
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The usual boundary layer parameters are defined: 

5. 

momentum thickness 

o 
displacement thickness 

o 

shape factor 

H = S*/e 

friction coefficient 

(6) 

(7) 

(8) 

(9) 

ip? do) 

The pressure may be written in terms of the free stream velocity by 

use of the Bernoulli equation. 

+ rPU2 = 

or 

p + r pU~ = constant 

1 d£= y dU 
p dx   dx (11) 

Then, vith the above definitions, equation (6) can be reduced to 

d5r + (H + ^ üdbT r (12) 

Equation (12), however, contains three unknowns and does not enable 

one to calculate the shape of the velocity profile, which is of primary 

importance in an adverse pressure gradient. In order to proceed past 

this point, other equations must be determined either empirically or 

from the partial differenctial equation (3). There are several methods 

of obtaining further equations from equation (3), three of which will 

be listed here: 



l) by taking moments in u or y, i.e. by multiplying equation 

(3) by u y and integrating across the boundary layer. (This gen- 

eral approach is outlined in Ref. 8)) The zeroth moment, n = 0, 

m = 0, is the usual momentum integral 6quation (6) or (12). The 

first moments, n = 1, m = 0 and n = 0, m = 1, which result in the 

energy and moment of momentum equations, respectively, are also of 

primary importance. The energy equation obtained in this manner 

can be simplified to (Ref. 3) 

where 

?^(üVt)E25 p7^)dy (13) 

r ^ 
S**= \  jj[l-{li) ] dy (energy thickness)  (lij) 

2) by dividing the boundary layer into strips and integrating 

equation (3) across each strip 

3) by satisfying equation (3) at certain points within the 

boundary layer. 

In all of these methods the value of the turbulent shear strees 

within the boundary layer is necessary, as would be expected since it is 

the rate of transfer of momentum to the inner layers. 

(b) Approximate Calculation Methods 

Several methods of predicting the behavior of a turbulent boundary 

layer in an adverse pressure gradient have been proposed (Refs. 8 - 30). 

No attempt will be made to describe each of these methods individually 

here, but rather a summary of the assumptions on which they are based. 

(A comparison of some of the methods is given in Refs. 9 and 10.) 

Almost all of the methods so far proposed make use of the momentum 

integral equation (12), or at least some variation of it. The problem 

then remains of obtaining further relations for the skin friction and 

shape factor. 
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The skin friction in an adverse pressure gradient is somewhat uncer- 

tain, but several empirical relations exist (Refs. 31 - 33, for example). 

One of the best known and perhaps most reliable skin friction equations 

for an adverse pressure gradient is that suggested by Ludwieg and Till- 

««««(33) mann 

cf - 0.21*6 Re-
268 10-678H (15) 

By making two simplifying assumptions which may partly compensate 

for each other, equation (12) can be integrated. Since H only varies 

from approximately 1.3 to 2.5 for a turbulent boundary layer, H + 2 

may be regarded as a constant in the integration. And, since the skin 

friction is usually unimportant in an adverse pressure gradient, an ap- 

proximate flat plate equation may be used 

-l/n 
c = constant • R "^ (l6) 

Then, equation (12) can be integrated (see Ref. 3) 

s ^ . i. [o t a I   ^1        (17) 

where a, b and n are constants, usually taken as approximately 0.016, 

k'O   and  ii, respectively. C is the constant of integration. 

It has been found (Refs. 13 and lii) that, if the pressure gradient 

is sufficiently severe, reasonable results can be obtained with the ap- 

proximate relation 

^ u i 
where c is an empirical constant, approximately li.8 or 5. 

In general, equation (12) and the preceding simplifications agree 

reasonably well with experiments, except possibly near separation. 

Where agreement is not good, several authors (Refs. 28, 3k - 39) have 

explained the discrepancy as the effect of normal stress or three-dimen- 

sional flow (see part (d)). 

(13) 
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P  _ 1/n Ö dU 
1 " Re  u d^ 

In order to predict the shape of the velocity profile or separation, 

however, some further relation is needed. It is here that the methods 

differ and agreement with experiment is no longer reliable. 

Several attempts (Refs. 11 and 12) have been made to develop theories 

based on the form parameter 

(19) 

which corresponds to the Pohlhausen parameter for laminar flow (see Ref. 

3). The assumption here is that the shape of the velocity profile is 

only a function of local conditions, which is not true if these condi- 

tions are changing rapidly, even in laminar flow. In special cases and 

where the conditions change very slowly, however, a local parameter such 

as P might be of value. But as suggested by PrandtP 'one would in 

general expect the rate of change in the velocity profile, not the pro- 

file itself, to be related to P . 

Most methods of predicting turbulent boundary layer behavior make 

use of the assumption that the velocity profiles form a one parameter 

family, which has been verified reasonably well by experiments. The pro- 

files are usually characterized by the shape factor, H, as a parameter. 

if-f^, H)   n-y/s (20) 

The shape factor varies from approximately l.h for zero pressure 

gradient to 2.5 near separation, for turbulent boundary layers. Q^p- 

ical profiles are shown in the following figure. 

1 
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The problem then reduces to one of finding an equation for H or 

its (privative. Many of the shape factor equations that have been sug- 

gested can be written in the form: (Ref. 10) 

sf-^Viüc^V) (21) 

Equation (2l) may be strictly empirical, or it can be derived from equa- 

tion (3) as outlined in the preceding section, with an empirical relation 

for the turbulent shear stress. 

The most usual assumption for the velocity profile is the power-lawj 

vl/n iHn)J 

where, from the definition of H, equation (9) 

2 
n = H 

(22) 

(23) 

With this assumption for the velocity profile, the shape factor 

equation (2l), based on the first moments of equation (3), may be derived; 

(see Ref. 8) 

energy 

dH 
9d7 = H(H-l)(3H-l)|f ♦ (3H-1) H !£ - (3H - 1) 

o P 

moment of momentum 

S ;H(H {2k) 

oM-     H(H + 1)(H2 - 1) 9 dU     ,2      lirH'X e_. i—p utaMH ":L;[Hr 

- (H + 1) 
\ 

dy (25) 

The physical significiance Of the terms in equation (2l) now be- 

comes apparent. The first term on the right represents the pressure 

force, which acts with equal magnitude across the boundary layer and 

tends to move it toward separation. The second term, gp, represents 
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the shear forces which, in an adverse pressure gradient, transfer momen- 

tum to the inner layers and tend to delay separation. If the pressure 

gradient is sufficiently severe, the shear forces are unimportant except 

very near the surface and gp is not important in equation (21) (Ref. 2h). 

On the other hand, when the shape is not changing, dH = 0, the two terms 

are equal. 

In general, equation (21) depends on three factors; 

1) the velocity profile assumption, 

2) the method of derivation, 

3) an empirical relation for the shear stress. 

It is generally agreed that the greatest uncertainty is involved with the 

turbulent shear stress, so this factor will be discussed in detail later. 

The effect of the first two factors can te seen by comparing the functions 

g, and gp. Figure la shows the function g, based on the power-law 

profile for the energy equation {2h),  the moment of momentum equation (2$), 

and an equation derived by integrating (3) across the inner half of the 

boundary layer. Figure lb shows g, based on the moment of momentum for 

three velocity profile assumptions. 

1) power-law 

2) linear, u/U = a + b^ 

3) experimental profiles of Ref. kl» 

The function gp depends on the shear stress assumption which in turn 

depends on the method of derivation, but the effect of the velocity pro- 

files can be compared for any derivation. For the moment of momentum gp 

can be written: 

1 

o 

(26) 

The functions   h,    and   hp   are compared in Figure 2 for the three pro- 

files. 
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To summarize briefly, most recent methods of predicting turbulent 

boundary layer behavior make use of the momentum integral equation (12) 

with an empirical equation for the skin friction. The boundary layer is 

then characterized by the shape factor, H, which is determined from an 

equation of the form (2l). The shape factor equation involves some 

assumptions concerning the velocity profiles and the shear stress within 

the boundary layer. 

(c) Turbulent Shear Stress 

The shear stress within the boundary layer 

X-^l^-pOT" (27) 

has so far proved to be the most uncertain factor in predicting the be- 

havior of turbulent boundary layers. It is this unknown quantity, along 

with the Reynolds normal stress, that forces any analysis to be only ap- 

proximate. 

One possible approach to the problem (Ref. 1^2) is to express the 

shear stress in the form 

— =a+bTX+cVj_2+ d)l3 (28) 
*-w 

where the coefficients are determined from the boundary conditions 

n = 0   I = t w   ly = ff (from equation (3)) 

>l = 1   t = 0     |^ = 0 L 3y 

Then, equation (28) can be written 

(29) 

^ = a - 3^ + 2^) + (n - 2^ + n
3) ^If 

^-w cw 

Equation (29), however, assumes that the shear stress only depends 

on local conditions and, unless this is true of the velocity profile, 

implies that it is independent of the velocity gradient normal to the wall. 
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Perhaps the most usual approach is to define a turbulent, or eddy, 

viscosity as suggested by Boussinesqj 

5u 
ay (30) 

which corresponds to the kinematic viscosity in the laminar case. This 

definition, of course, simply replaces one unknown by another, but it is 

sometimes useful in making empirical generalizations about the shear stress. 

The problem now remains of finding an expression for the eddy viscos- 

ity. If the turbulent shear stress is assumed constant near the wall and 

the velocity is logarithmic (see part (f)) then € must be linear. 

€ = (*ut)y (31) 

For pipe flow and boundary layers in zero pressure gradients, it can 

be shown from the velocity profiles (see Refs. 3 and 6) that € is approx- 

imately parabolic with distance from the wall. 

(32) 

However, it has been found (Refs. 1, 3 and 1^3) that in many cases, 

such as free shear flows and the outer part of the boundary layer, reas- 

onable results can be obtained with a very simple assumption of the form 

constant (33) 

In most of the approximate theories just described, an integrated 

value of the shear stress is needed, which may be obtained directly from 

experiments or by use of an expression for the eddy viscosity. The sug- 

gested values differ widely, so only two typical examples are listed here. 

—r- = (l - y ) constant 
u-tS 

€ 
US 

corresponding to equations (2ij) and (2$), 

S ^, -2 

and i j :i_dy=.o^!rtTRe •1/10 (Ref. 27) 

(3U 

(35) 
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(d) Turbulent Normal Stress 

In the derivation leading to equation (12) from equation (3) it was 

assumed that the Reynolds normal stresses 

3u'2    ,,   3v'2 —r—   and   -—  3x ay 

were small compared to the other terms and could be neglected. However, 

several authors (Refs. 28, 3^ - 37) have questioned the validity of this 

assumption, especially near separation. Some discrepancies between equa- 

tion (12) and experiments have been noted, which might be explained in 

part by the omission of the normal stress. Other investigators (Refs. 1 

and 38) have contended that the discrepancies are due mainly to small 

amounts of three-dimensional flow. 
2 

If the u'  term is left in equation (3) through the integration 

1   r  ^u«2 , 
7 J — dy 

0 
must be added to the right hand side of equation (12). 

—7 
If the v1  term is also considered, the y-momentum equation (h) 

must be used, which can be integrated. 

p = po" i TT ^ = ^0" ^ (36) 

■^0 

where p  is the pressure outside the turbulent region. 

The momentum integral equation corresponding to equation (12) can now 

be written (Ref. h) 
h 

^-)|i4^1 ^-v^ d9 
dx ' s" ' fc' U dx  2 ' .2 r r (37) 

In order to determine the importance of these additional terms, the 

experiments of Reference i^l have been conjpared in Figure 3. Here the cal- 

culated values are shown for equation (12) alone, with the correction for 

u1  Included, and for the complete equation (37). 
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Without intending any implication about the experimental data, the 

result of assuming an arbitrary small amount of three-dimensional flow is 

also shown in the figure. In this case the momentum integral equation can 

be written, for the line of symmetry, (see Ref. 56) 

o 
where w is the angle between the streamline and centerline. For the 

present purpose, it was assumed that dm/ dz   is constant in the y-direc- 

tion (l0/FT.) which is similar to an axisymmetric body with changing rad- 

ius, or radial flow. In general, this assumption would not be true, but 

it gives some idea of the relative importance of the normal stresses and 

small amounts of three-dimensional flow. 

The turbulent normal stress, like the shear stress, must be deter- 

mined empirically. Two examples of the expressions that have been sug- 

gested are 

V ] i£-ayf(*g)   (Brf.28)  (39) 

and 7 I Ä^-^^-Jlr'^    (a8f-36) 
m 

(e) Non-uniform Mean Flow 

It is usually implied in the use of two-dimensional equations of 

motion that the time mean flow is in fact two-dimensional, i.e. uniform 

in the z-direction. It is known (Refs. 56 and 57) that streaks or longi- 

tudinal vortices do exist, even when the overall average flow is two- 

dimensional. If these irregularities move about randomly, no error arises 

from the use of two-dimensional aquations. On the other hand, if they 

remain fixed because of irregularities in the surface or approaching flow, 

additional terms occur in the equations. 
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Following the method of Reference 56, these additional terms can he 

derived as follows. The total velocity may he divided into a space-time 

mean, which corresponds to the usual time mean, the usual time fluctuat- 

ing velocity, and a space perturbation. 

u(x, y, x) = ü(x, y) + u'U, y, z, t) + un(x, y, z)  (1*1) 

Z T 
where 

*'-m lz U
u dt dz 

* z 
\ u' dt = 0   and \ u" dz = 0 
J-T J-Z 

Similarly for the v-component, 

v(x, y, z, t) = v(x, y) + v'Cx, y, z, t) + vM(x, y, z)(l|2) 
z 

Then, by using these velocities in the equations of motion, the fol- 

lowing terms appear in equation (3) instead of the usual Reynolds stresses. 

^-(u'2+u"2)  and  ~ (u^v7" + u''v'') 
o x d y 

In some cases, such as behind a vortex generator or a strut, these 

additional terms maybe very important. In the usual adverse pressure 

gradient, their importance is still uncertain. Since no quantitative 

results have been published and none could he measured in the present 

experiments, these terras must be neglected, at least for the present. 

Compared with the other uncertainties involved, this effect is probably 

not important. 

(f) Separation 

The ultimate goal in attempting to predict the behavior of the tur- 

bulent boundary layer is, of course, the ability to predict separation. 

or stall. 
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Several attempts have been made to develop separation criteria of 

the form 

r = RQ  1r d~ = constant (at separation) ihl) 

The impossibility of determining a universally valid constant from the 

experimental data is shown in Figure 1^. However, such a criterion might 

be useful in special cases and as a lower limit, below which separation 

would not occur. 

In most of the approximate metjiods, separation is assumed to occur 

when the shape factor reaches a certain value, for example H = 2.5. How- 

ever, due to the approximations, these methods are not very reliable for 

large values of H. In many cases separation takes place very suddenly, 

and the uncertainty in the shape factor is no problem. When the pressure 

rise is very gradupl for some distance upstream of separation, the pre- 

dictions usually fail (see Ref. 9)- 

Some recent objections have been given to the usual conception of 

stall (Ref. liii) and the implication that boundary layer theory alone is 

sufficient to predict it. Turbulent separation is, in fact, a very com- 

plicated process and usually takes place over a somewhat unsteady region. 

It is clear that a thorough investigation of separated flow must include 

the particular configuration. However, it can hardly be denied that the 

behavior Of the boundary layer is a necessary part, which can be treated 

independently, within limits. 

(g) The Wall and Wake Laws 

In addition to the prediction methods described above, a large amount 

of effort has been expended in obtaining useful correlations of the mean 

quantities in turbulent flow. The power-law discussed earlier is one 

example, which probably stems from the observation that in the absence 

of a pressure gradient the velocity near a surface can be approximated 
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by a l/7 power. It was' later extended to the case of a pressure gradient, 

with some experimental justification, by assuming a variable power. 

Perhaps the most important correlations of this type are known as 

the "law of the wall" and "law of the wake". These laws and their imp- 

lications have been thoroughly discussed by several authors, especially 

References 5l, 52, and 53, so only a brief outline is attempted here. 

If it is assumed that, in the absence of a pressure gradient, the 

flow near a solid surface is only dependent on local conditions, then 

dimensional arguments lead to the conclusion. 

u* Mr/ (1*2) 

where ut = J'Cjp   is the friction velocity. 

Except for a thin viscous sublayer, it has been found empirically 

and by arguments that will be discussed later that equation (1$) can be 

written 

Sr^)" Ut 
(ii3) 

where K. and B are empirical constants^ The values that have been 

suggested vary slightly, but those listed in Reference 5l are .1+0 and 

5.1, respectively. 

One very important inference, based on experimental observations 

(Ref. 33) is that equation {k3) holds even in the presence of a pressure 

gradient. Some theoretical work has been done in determining the limits 

of the wall law, but because of the unknown eddy viscosity, nothing real- 

ly conclusive can be said. The arguments leading to equation (iß) are 

based on the fact that near the wall the shear stress is very large com- 

pared to the inertia and pressure force. In the case of a pressure grad- 

ient, the shear stress is large compared to the pressure force for only 

a limited value of y. 
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For a balance between pressure and shear forces 

i. = 1 + Xy
+ 

vhete 
.yut r-[^)  **    x-^x-fE 

and by definition 3«/ut 

(W») 

In order to integrate equation (kh) for the velocity, some assump- 

tion must be made about the eddy viscosity. In zero pressure gradient, 

assuming X - X„ 

^♦1 

= 0,(y+) (1*5) 

where 0 is the universal function. If it is assumed that equation (hS) 

is valid for an adverse pressure gradient, the velocity can be written 

y+ 

^ = |Zi(y+) +X ^ y+0'(y+)dy+ (1*6) 

Since the turbulent viscosity, would not be expected to approach zero 

even when X  vanishes, Ferarriv  assumes 

e •"J^yky.p 

which decreases the effect of the pressure on the velocity. 

The law of the wall from Reference 5l is shown in Figure 5, along 

with the possible corrections for pressure. 

The wake law, or velocity defect, is usually written in the form 

u. - U 
ux 

-S* (TT,^) (1|8) 

where TT is only a function of x. 
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If equations (1*2) and (li8) are assumed to agree in some overlapping 

region, then a logarithmic relation follows immediately. By combining 

(53) 
the two laws, Colesx 'writes for the entire boundary layer 

n   1     '"t      TP 
(1*9) 

w = 2(3vl
2 - 2r\>

3) 

where w is a universal wake function. The function, w, as determined 

by Coles from a large amount of experimental data, is shown in Figure 5 

with the approximation. 

The wake parameter,"IT, is an unknown function of the Reynolds number 

and pressure gradient but is independent of y, the distance from the 

wall. For zero pressure gradient IT = .55, except at low Reynolds num- 

bers where it vanishes. 

(h) Special Cases 

The difficulties involved in a general approach to the problem have 

led to the investigation of special cases, two of which are the equili- 

brium layer and the boundary layer with zero skin friction. 

The equilibrium layer (Refs. 1, 30, 58 and 59) is one that has dev- 

eloped through a region of unchanging conditions, i.e., a constant ratio 

of the shear and pressure forces. The velocity profiles are then similar 

when plotted as 

u - U 
  v.s. y\ 

which corresponds to a constant wake parameter,IT, in the preceding sec- 

tion. The boundary layer in zero pressure gradient is one example of 

the equilibrium layer. 

The boundary layer with zero, or negligible, shear a'tress has also 

been investigated (Refs. 29, 50, 60 and 6l). In this case, the flow is 

decelerated as rapidly as possible without causing separation. After a 
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sufficient length of development, the boundary layer should approach 

equilibrium. 

These special cases represent definite conditions to which the bound- 

ary layer is subjected, and for which the response can be observed. By 

making certain assumptions concerning the velocity and turbulent shear 

stress, this response might be predicted. Then by generalizing these 

assumptions, the response to an arbitrary pressure gradient might also 

be predicted. 

(i) Evaluation of Existing Theories 

Since there are no exact solutions for the turbulent boundary layer, 

an ultimate evaluation of the existing theories must depend on experiments. 

Some of these methods have been compared with experiments other than those 

on which they were based (see.Figures 7a, 7b ), with the general conclu- 

sion that more work is needed. However, it is not the purpose of the 

present review to evaluate each of the several methods individually, but 

to examine the basic assumptions that must be made. 

One of the basic assumptions that can be improved in most methods 

is the velocity profiles. The power-law, or any one-parameter family, 

becomes very approximate in an adverse pressure gradient. The shape fac- 

tor varies with the Reynolds number even at constant pressure. It is 

usually argued that this assumption is not critical, and a simple one is 

Justified in order to facilitate hand calculations. However, this restric- 

tion is not necessary, and a computer solution may even be desirable. 

Undoubtedly, one of the main difficulties with the existing methods 

is the turbulent shear stress. Although this may always be the case, the 

previous assumptions can definitely be improved. It is generally agreed 

that the shear stress is the most critical part of the analysis, but rel- 

atively little work has been done in developing a reliable correlation. 
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However, the main objection to the present situation is not the ap- 

proximate methods, but the failure to fully examine their limitations. Al- 

though the turbulent shear stress is (and must remain) somewhat uncertain, 

its effect has not been examined quantitatively. In addition, the limit 

to which these methods should be relied upon in approachins separation 

has hardly been considered at all. 

The purpose of the present experiments and analysis, then, can be 

divided into three factors 

1) to improve the necessary assumptions as far as possible 

2) to develop a calculation method, using these assumptions, that 

can be easily applied 

3) to examine the limitations that any approximate method must 

have with the present uncertainty in turbulent shear flow. 

III. EXPERIMENTAL PROGRAM 

A fairly large number of experiments on the turbulent boundary layer 

in an adverse pressure gradient have been published (Refs. 1, 17, 20, 35, 

iil, 1|6 - 50). However, most of the experiments were limited to one con- 

figuration and one pressure distribution. Differences in behavior from 

one experiment to another in these cases may be largely due to the pecul- 

iarities of the apparatus. In many of the experiments there is at least 

some uncertainty concerning three-dimensional flow. In some cases a reas- 

onably large aspect ratio of channel width to height was reported, but 

perhaps even more important is the width of the channel to the length of 

pressure rise. Although it is generally agreed that the most critical 

part of the approximate methods is the turbulent shear stress, relatively 

little experimental data exists. 

For these reasons, an experimental investigation has been carried 

out, concentrating on three main objectives: 
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1) obtaining data for several pressure distributions on one apparatus 

2) obtaining data as free as possible from three-dimensional flow 

(or with control of three-dimensional effects) 

3) obtaining data for the turbulent shear stress. 

(a) Apparatus and Equipment 

A photograph of the apparatus and equipment is shown in Figure 8a and 

a schematic diagram in Figure 8b. The test section consists of a 6 inch 

plastic cylinder concentric with a 10 inch diameter porous metal cylinder. 

Air is supplied by a 6000 CFM axial flow fan into a 7 foot long chamberj 

then through a honeycomb and three screens, and finally accelerated to a 

ft 
approximately 100 '- at the entrance of the working section. 

S6C« 

An adjustable end plate in the annulus causes the flow to diffuse 

out through the porous metal and creates the adverse pressure gradient. 

It can be removed for comparison with zero pressure gradient. The bound- 

ary layer to be studied grows along the plastic cylinder and separates 

somewhere in front of the end plate. The pressure distribution can be 

adjusted as desired by symmetric strips on the porous cylinder, which can 

be moved to any position or removed entirely. The strips can also be 

placed on one sue only to create a three-dimensional flow. 

The static pressure is taken by a row of static taps spaced 2 inches 

apart along the cylinder and at three positions on the bottom and sides. 

The plastic cylinder can be rotated to any angular position in order to 

check the pressure variation around the test section. The static taps 

are l/8 inch brass rods inserted into the plastic and ground flush with 

the surface, with .030 inch holes. The static pressures are read on a 

26 tube inclined manometer board on which the pressure distribution can 

be observed directly. 
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The mean velocity was measured by total head tuhes of various sizes 

from .020 to .080 inch outside diameter, using the static pressure from 

the wall taps. The probes were mounted on a micrometer traversing mech- 

anism for taking the velocity profiles and could be inserted through the 

porous cylinder at any desired position. 

(b) Hot-wire Equipment 

The hot-wire equipment consisted mainly of two transistorized, con- 

stant temperature amplifiers and linearizers manufactured by Leslie T. 

Miller, of Baltimore, Maryland. The units were mounted on a single chas- 

sis for making the u'v' measurements. The wires were .00015 inch diam- 

eter tungsten, copper plated on each end with a bare section .060 inches 

, long. The wires were soldered onto needles spaced about l/8 inch apart 

and mounted on a steel tube that could be used with the micrometer traver- 

sing mechanism. 

Power was supplied to the hot-wire amplifiers by two 6 volt wet-cell 

batteries. The D. C. voltage output was read on a Heathkit VTM and fluc- 

tuating voltage on an Electronics Instrument RMS meter. The signal was 

monitored on a Dumont Model 30li-A oscilloscope and the low frequencies 

recorded on a Sandborn Model 300B recorder. The energy spectrum was taken 

with a Hewlett-Packard M302A wave analyzer. 

(c) Experimental Methods 

The static pressure taps were checked in zero pressure gradient for 

sensitivity to flow and found to check within 1 percent of the dynamic 

head. The inclined manometer could be read within t .00k  inches of water. 

The flow was checked for symmetry by rotating the pressure taps to 

different angles, observing the 'line' of separation, and by observing 

the flow direction. In no cases could three-dimensional flow be detected. 
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A small calibrating tunnel was used with the hot-wire instruments. 

For the single wire, the procedure was quite straight forward, and the 

mean values checked reasonably well with the pitot measurements. The 

cross-wire used for making u'v* measurements, however, was extremely dif- 

ficult to calibrate. The wires were first calibrated individually in the 

small tunnel, taking care to make the response as linear and as nearly 

the same for both wires as possible. The probe was then placed in the 

apparatus and checked in the free stream at two speeds. A second cali- 

bration was made by removing the end plate and taking the RMS voltage 

near the wall in zero pressure gradient, which should agree with the skin 

friction. The skin friction in this case could be determined by comparing 

the mean velocity profile with the 'wall law1. Then, by assuming 

the constant could be determined. The constants determined in both ways 

usually differed by approximately t 5 percent; if more than 10 per cent 

the process was repeated. The difficulties were due mainly to the re- 

sponse of the wires not being linear and equal, drift of the electronic 

system, and improper alignment. It was felt that these errors were min- 

imized by calibration in the apparatus at zero pressure gradient, so the 

value found in this way was used. 

(d) Experimental Results 

Some typical experimental results, taken with the above apparatus, 

as shown in Figures 9 - lb« The mean quantities include the pressure 

distribution in terms of the free stream velocity and the ususal para- 

meters, Ö and H, which were determined from the measured velocity pro- 

files. These values are shown as a function of x, the distance along 

the cylinder starting from the first pressure tap, which was approxim- 

ately the point of minimum pressure. 
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Three tasically different pressure distributions are shown in Figure 

9, which differ widely in pressure rise to separation. The advantage of 

early deceleration may he explained by the greater ability of a thin bound- 

ary layer to transfer momentum to the retarded flow by turbulent shear 

stress. The limitations of boundary layer theory become apparent in pres- 

sure distribution (3), where the pressure continues to rise for some dis- 

tance beyond the beginning of separation. 

Two linear pressure distributions are shown in Figure 10 (No. 2 is 

the same as in Fig. <?)• In this case the x-dimension is divided by the 

starting momentum thickness, 9,. These curves show experimentally the 

effect of an increase in the relative length, l/öi>  on ^e pressure rise 

to separation. 

Figure 11 shows the result of a sudden deceleration followed by a 

region of constant pressure. Some idea of the length required for the 

boundary layer to respond to a change in the pressure gradient can be 

obtained from this result, as well as the limitations of a form parameter 

based on local conditions. 

The turbulent quantities, taken from hot-wire measurements, are shown 

in Figures 12 - lii. Figure 12 shows the turbulent intensity, u' , as a 

function of distance from the wall. The values are given for three posi- 

tions along the cylinder and were taken in the linear pressure distrib- 

ution (2). The corresponding measurements of the turbulent shear stress, 

u'v', are shown in Figure 13. Finally, the turbulent energy spectrum was 

taken for a few cases, two of which are shown iu Figure lli. 

IV. ANALYSIS 

The genral case of the approach that will be used here may be outlined 

by first writing the velocity in the form 

H = ^(VL) + a02(^) + ßi^) + 8^ (>,) + ....   (51) 
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where Vj. * y/§ , 0 (vO are m + 1 prescribed functions of 7)_ , and 

a, ß, X , . . are m parameters. In general, by making a wise choice for 

the 0(>|.)> fewer are needed. 

. Then by any of the methods mentioned in Section II, m + 1 ordinary 

differential equations can be derived for S and the m parameters. 

With the above velocity profiles these equations can be reduced to the 

form 

dS = F1(8, a, B, 

da = F2( 

, t , U) dx 

" ) dx 

" ) dx 

" ) dx 

(52) 

dß = F3(  " 

d^S "F^  " 

Then, with starting values of S and the m parameters, given U 

as a function of x, and a method of determining the shear stress, t , the 

equations can be solved by a numerical stepwise procedure. 

In the laminar case 

r«fx|^U/s f(a, ß, *, . . . )       (53) 

Then by taking a sufficient number of parameters, equations (52 ^ can be 

solved as accurately as desired (Ref. 62). 

In turbulent flow, however, the shear stress must be approximated 

from experiemental data and is the most uncertain part of the analysis. 

Using more parameters necessitates more assumptions about the shear stress 

and makes the solution more dependent upon it. The object, then, is to 

choose the functions in equation (5l) so that only one or two parameters 

are needed. 

When a more reliable approximation for the shear stress becomes avail- 

able, through more experimental data and perhaps a better understanding 

of the flow, it might be advantageous to use more parameters. 
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(a) Velocity profiles 

As mentioned in Section II, the most usual assumption for the velo- 

city profiles is the power-law, but many others have been used. It is 

generally argued that this assumption is not too critical, and simple ones 

are justified. While this is indeed the case, it was felt that the velo- 

city profiles should be improved as far as possible before examining the 

effect of the other approximations. 

No one or two parameter family of velocity profiles could be expected 

to fit every possible case, but perhaps the best so far proposed is that 

of Coles (Ref. 53). 

7T yur, ih9) 
repeated H..ilog(_).B^.(H) 

where ^ = y/§ , K. = .1;0, B = 5.1. By rearranging and redefining the 

variables, equation {k9)  can be written in the form (5l). At ^ = 1, 

u = U. Then 

^-ilog^B^wd) (51.) 

Subtracting equation (5M from (1$) 

u.U_l_^ .TTr..(7i)_v(l)-|        (55) 

(56) 

(57) 

U-c        KiütiU^   ' K 

But -/W:f- 
Letting 

a ■ K y 2    K u 

ß = - 2Tra 

and using the approximation for   w( r\_) 

w = 2(3^2 - 2n3) 

Equation {k9) can finally be written 

£= l + a log?!   +ß(l - 3n2 + 2VL3) 

(50) 
repeated 

(58) 
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With the above definitions, equation {5h)  can be written 

1 • a log (— ' »< • a) + aB + ß 

or ß = a[log (a R%)  + 1.123?] - 1 (59) 

These equations (58) and (59) constitute a two parameter family, but 

with the parameters related by the Reynolds number. Therefore only two 

further equations are needed for the unknowns a and S . The profiles 

are shown in Figure l5 for one Reynolds number. 

Equation (5M and (59) are an implicit expression for the skin fric- 

tion, cf, in terms of the shape of the velocity profiles and the Reynolds 

number. This relation is shown in Figure 16, compared with the Ludwieg- 

Tillmann equation. 

(b) Momentum Integral Equations 

With the above velocity profiles, two further equations are needed. 

The first is obtained by integrating equation (3) across the boundary 

layer, from y = 0 to 5 . The result is, of course, the usual momentum 

integral equation, which in this case can be written (see Appendix A) 

f5 d7 + f6 dx + f7 dx f8 (60) 

Since the skin friction is related to a by equation (57) no further 

unknowns are involved in equation (60). 

Any of the methods mentioned in Section II might be used to derive 

a second equation. In general, there have been no really convincing argu- 

ments as to which method is most reliable. The first two methods might 

be preferable, especially for turbulent flow, since they involve inte- 

grated quantities rather than values at a point. With the above assump- 

tion for the velocity profiles, the method of dividing the boundary layer 

into strips is by far the simplest. For this reason it is used in the 

present analysis. 



29. 

Then, in order to derive a second equation, the momentum integral 

is satisfied over the inner half of the boundary layer. Integrating to 

1. = .5 is arbitrary, but it seems reasonable when using two equations 

to take approximately half of the boundary layer. This choice should not 

be critical as long as values not too close to 0 or 1 are used. A 

value ot \ m .k  was also tried, with almost identical results. 

The integral of equation (3) from y = 0 to y can be written 

^ \^-r* S«W£ + - 
I,, - t(y) 

(61) 

f IS    da    d£ 
9 dx  10 dx  11 dx  12 

Evaluating equation (6l) at "^l- .$   with the above velocity profiles 

results in the second equation (see Appendix A). 

(62) 

The shear stress, "L (y), which represents the transfer of momentum 

due to the turbulent mixing between the two halves of the boundary layer, 

is included in the function f,p. 

(c) Turbulent Shear Stress 

As mentioned earlier, the turbulent shear stress is the point where 

any analysis must rely on experimental results, at least with the present 

understanding of turbulent shear flow. Since these results are not very 

conclusive, it is also the point where the most uncertainty is introduced 

into the analysis. 

For lack of a better approach, the eddy viscosity is again defined 

(63) 
X       € 3(u/u) 

pU2""5 ^ 

As a first approximation, it might be assumed that the eddy viscos- 

ity can be written 

US = f(Rs> n) (61^) 
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Since for the present calculation method, the shear stress is only 

needed at ^l = .5 

%., -f(R5) (65) 

Then by applying the momentum balance, equation (6l), to the well 

established data for zero pressure gradient, the function f(Rs) can be 

determined. These results, which were based on the values of TT from 

Reference 63, can be approximated by 

ri  -   K 

k ■ loe'?- 7.6 * •oou    (as 5 5«»)   «*) 

In an attempt to test the validity of the assumption leading to equa- 

tion (66), that the eddy viscosity can be approximated by equation (61^) 

regardless of the pressure gradient, some experimental values have been 

examined. The turbulent shear stress was determined by hot-wire measure- 

ments and by the momentum balance, equation (6l). Since the shear stress 

in an adverse pressure gradient is usually a small difference between two 

large terms, the latter method is not very reliable, especially near sep- 

aration. The eddy viscosity was then determined with the measured slope 

of the velocity profiles. Figure 1? shows these results compared with 

the zero pressure gradient data and equation (66). 

It must be admitted that equation (66) is very approximate, but it 

gives reasonable results. The experimental evidence is not sufficiently 

conclusive to improve it, at least for the present. 

(d) Turbulent Normal Stress 

2    2 
Like the shear stress, the turbulent normal stress, u' and v' , 

must be determined from experimental results. In this case, however, 

the approximation is not important, and it is usually neglected entirely. 

Although these terms are small, they do occur in the equations and 

have a slight effect on the calculations. For this reason they are 
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included In the present analysis. It was found, for the present purpose, 

that the limited data could be represented reasonably well by the follow- 

ing approximations. 

i^Ä(u.2.v.2)ay.2U5.a)a*| 

5         
1  f a / ,2   72.  ,       2 / ,H   N2 S dU 

(67) 

(68) 

(e) Numerical Calculations 

With the assumptions for the velocity profiles, equation (66), and 

the turbulent normal stress, equations (6? and 68), the simultaneous dif- 

ferential equations (6o), (62) and (A-l) can be reduced to 

dS g = F1(a, ß,S, U) 

(69) 
da g - F2(a, ß, § , U) 

ß is determined from equation (59). 

Given starting values of S and a, and U as a function of x, 

equations (69) can now be solved in a numerical, stepwise procedure. 

The method of solution used here is the Runge-Kutta procedure, which in 

this case may be outlined as follows: (Ref. 6k) 

The x-dimension is divided into increments A x for the points x., 

x2> x3> * • • • xn 

Assuming U. is given at x., the derivative 

dUi  Vl " "i-l 
dx. 

1 
2 Ax 

and ßi = f(ai, R^)      (equation {$9)) 

For second order accuracy 

Si+i
=Si+jH^l+^2) 

where   ^ » F^, ß^ S., l^) 
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AS2 =F;L(a1 +kav ß.',   S.  +   AS^ u.^) 

■      ß '  = f(a    + Aa , R§      v 
i+l; 

A similar procedure is followed for   a, which gives 

a.+1=ai +i(Aa1 + Aa2) 

The process is then repeated for as many values of x as desired 

or until a = 0, where the calculation breaks down. 

No general rule can be given for the step size, but for starting 

values of H = l.h,  steps of several boundary layer thicknesses were 

used with no difficulty. However, for large values of H > 2.2,  the 

calculations showed a tendency to ocsillate for large values of Ax/g, . 

Most of the calculations reported here were for approximately 30 - hO 

steps. 

An estimate of the errors involved can be obtained by doubling the 

number of steps. The number was doubled in several cases for the pres- 

ent analysis, with almost no change in the result. 

The computer program is given in Appendix B. 

(f) Comparison of Theory with Experiment 

It should be pointed out that the preceding analysis in no way de- 

pends on the data with which it will now be compared; no constants are 

left undetermined. The velocity profiles, of course, were based on a 

large number of experiments, but not including the present ones. Some 

of the turbulent measurements of this investigation were used to justify 

the assumption that the eddy viscosity based on zero pressure gradient 

was reasonable. 

Before comparing the theory with the present experiments, some cor- 

rection must be made for the fact that the boundary layer was axisymmet- 

ric and not two-dimensional in the usual sense. Since the boundary layer 
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was fairly thin compared to the radius of the cylinder ( §/r = .3) this 

effect might be neglected as a first approximation. However, with the 

assumptions already made, the equations can easily be transformed for 

this case (Appendix C). 

Figure 18 shows the comparison of the approximate theory with experi- 

ment for the linear pressure distribution (2). The experimental pressure 

distribution is shown again in Figure 18a along with the experimental and 

calculated values of 0, both as a function of x. Figure 18b shows the 

corresponding values of H and a. The experimental values of a were 

determined from the velocity profiles, which were plotted on logarithmic 

charts. The profiles are shown in Figure l8c, both experimental and cal- 

culated values. As can be seen, the agreement between theory and experi- 

ment is very good, especially for the parameters 9, H and a. 

Figure 19 shows the comparison of theory and experiment for the three 

different pressure distributions. The agreement is not quite as good in 

the two new cases as with the linear pressure distribution, but still reas- 

onably good for an approximate theory. 

(g) Reliability 

Since there are no exact solutions for turbulent flow, the approx- 

imate theories can only be checked by experimental means. In this case 

there are two sources of errors, those involved in the approximations and 

the experimental ones. These errors may often compensate for each other, 

especially if the approximate methods are based on the experiments. Al- 

though the present method agrees very well with the experiments, a reason- 

able amount of uncertainty must be admitted. 

Again the main source of errors in the approximations is the turbu- 

lent shear stress, but it is difficult to determine just how much uncer- 

tainty is involved. In order to determine the sensitivity of the final 
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result to errors in the eddy viscosity, equation (66), values of t 1$ per- 

cent were assumed. In some cases these values are probably exceeded, but 

the average should be within this range, since most calculations start 

from zero pressure gradient. The resulting errors in the calculation of 

the shape factor and momentum thickness are shown in Figure 20, for the 

linear pressure gradient. 

In order to obtain a more general idea of the effect of errors in 

the eddy viscosity, three general types of pressure distributions were 

calculated. Since the pressure rise to separation is of primary impor- 

tance, the calculations were carried to the point where c = 0. These 

points were then plotted as a function of x/S,. The resulting curves, 

Figures 21, 22 and 23, show the pressure rise to separation, hypothetic- 

ally, for the three general types, with the uncertainty due to the assumed 

range of * 15 percent in the eddy viscosity. 

Experimental errors enter into the calculations through the initial 

conditions and pressure distribution. If the boundary layer is allowed 

to develop for some distance in zero or a mild pressure gradient, the 

initial conditions are not very important. Some idea of this effect can 

also be gained from Figures 21, 22 and 23 by a change in x/ &.., which 

becomes less important at large values. 

One of the main difficulties in comparing the theory with experiment 

is the pressure distribution near separation. In this region the pressure 

depends on the behavior of the boundary layer, which in turn is very sen- 

sitive to the pressure. By assuming the pressure independent of the 

boundary layer, one would be very fortunate to calculate a flow that 

would give this pressure. These facts are illustrated by assuming a 

slight change in the linear pressure distribution. Figure 21N 
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h.   SUMMARY and CONCLUSIONS 

In attempting to predict the behavior of turbulent boundary layers, 

it is safe to conclude that some assumption must be made for the velocity 

profiles. 

ij = f(r)_, a, ß, . . . .) 

With the present uncertainty in the turbulent shear stress, it is unlikely 

that anything can be gained by leaving more than one of the parameters, 

a, ß, . . ., completely free, i.e. to be determined from the momentum 

equation. It is generally agreed that the assumption for the velocity 

profiles, within reason, is relatively unimportant. However, if a choice 

must be made, the most successful correlation so far proposed is the "wall 

law" with an outer wake region. 

In order to determine the boundary layer thickness and the profile 

parameter, or shape factor, two equations are needed. 

i ■ v°.s • « 

There is no definite criterion for the derivation of these equations, but 

experience has shown that they should involve integrated quantities. Pei- 

haps the most reasonable choice is the usual momentum integral equation 

and either its first moment or a momentum integral for the inner part of 

the boundary layer. 

Before the momentum integral equations can be used to calculate a 

and S , however, some assumption must be made for the Reynolds stresses. 

The normal stress is a relatively small term and is usually neglected, 

but several investigators have questioned the validity of this assumption. 

The inclusion of experimental values of normal stress does have a slight 

effect on the calculation of the momentum thickness, which is fairly 
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insensitive to the shear stress within the boundary layer. However, in 

the calculation of the shape factor, the effect of the normal stress is 

much smaller than the effect of the uncertainty in shear stress. 

The conclusion by several authors that turbulent shear stress within 

the boundary layer is the most critical part of the approximate methods 

was substantiated quantitatively in the present analysis. Since the 

experimental data is both limited and scattered, it seems reasonable to 

use what has been learned from zero pressure gradient experiments, i.e. 

assume the eddy viscosity depends only on local Reynolds number. Just 

how much uncertainty is involved in this assumption is difficult to deter- 

mine, but for the purpose of investigating the effect on the final result, 

a range of J 15 percent seems reasonable. In calculating the shape fact- 

or, the effect of this uncertainty is considerable. However, in calcul- 

ating the pressure rise to c = 0, it amounts to only about * 5 percent, 

unless there is an extremely small pressure gradient near the 'separation' 

point. 

It must be concluded that, with the present uncertainty in the tur- 

bulent shear stress, any method of predicting the behavior of the bound- 

ary layer becomes very approximate as separation is approached. Since 

the flow of momentum is proportional to velocity squared, the shape of 

the velocity profile is very sensitive to errors in the pressure and 

shear stress in this region. However, if the pressure gradient is reas- 

onably large, it is safe to assume that separation will occur with very 

little further pressure rise. 

It is finally concluded that one of the main difficulties with the 

approximate methods is the attempt to use them under conditions verging 

on separation, without considering the effect of the boundary layer growth 

on the pressure. In most cases involving separation, an experimental 
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pressure distribution is used. Then with any error at all, the boundary 

layer displacement that is calculated would not result in this pressure. 

In order to take this effect into account, however, the geometry of the 

overall flow must be considered. 

IV. RECOMMENDATIONS for FURTHER STUDY 

Since the prediction of turbulent boundary layer behavior must ultim- 

ately rely on empirical results, more reliable experiments will always be 

useful, In the general case, a more reliable correlation and perhaps a 

better understanding of the turbulent shear stress is definitely needed. 

However, at this time there is probably more to be gained from a 

complete investigation of separated flow about a particular configuration. 

In a review of the unsolved problems of fluid mechanics Kline and Dean 

conclude that the "prediction of the advent and behavior of stall is per- 

haps the most pressing single problem"'. An investigation of this type 

should include both the boundary layer and the separated region. 
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APPENDIX A. Derivation of Equations for a, ß and S 

The first equation 

rl dx  r2 dx 13 dx  rl4 (A-l) 

is obtained directly from the velocity profiles, by differentiating equa- 

tion (59). 

The derivation of the two momentum equations is quite straight for- 

ward but somewhat tedious, so only the main steps are outlined here. 

Evaluation of equation (6l) at y = § and y = $/Z   results in the 

following: 

h. *[ ±^.y)äx 

p   dx 

(A-2) 

and 

thLllLilt     I    2.(^.^)itl     (A.3) 
which can be written 

where 

f   dS + f da +f d£ f5 d^  f6 dx  f7 dx  f8 

f äi + f  da+f  M.f 19 dx  ^0 dx  11 dx J12 

'5-  1 t   ff-«!)2] ^ 
O 

f/ I« +.f ^a.si. ( r H.(H\2-idv 
^    dx      ^ dx dx   J   L    U     luM Qrl 

c ' 2 f     r r u   o/u\ ^,i .    sdu f8=r " i L ü-^ü) +1i dVuH o 

r--5   o o 

(A-l|) 

(A-5) 
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f      SSL + f    ^ = sfH)       i.    \   H dv> 

o 

+ ^ ^ • ü 57+ T \ 5- ("' - v ) d^ 
u     o 

Then, with an expression for the velocity profiles in terms of   a 

and   ß, equation (58), the integrals can be evaluated.   However, for 

small values of   r|_ , the logarithmic profiles are negative and should 

not be used in this region.   From Reference 5l, equation (58) is valid 

for   y Ut/y-  = 50, which results in joining the profiles at a variable 

y\ .   For the purpose of integration, the velocity is approximated by 

g.^y^ (n)l/!J        O^n-0.1 (A.6) 

which agrees reasonably well with the empirical results quoted in Refer- 

ence 5l. (A power of l/7 on the second term was also tried, with similar 

results.) 

The constants   k.    and   kp   may be evaluated by equating the velo- 

city and first derivative of equations (58) and (A-l) at   1^= 0.1. 

k   = - 2.1i8l6 + 18.2613 a - 3.1065 ß 
1 (A-7) 

kg - 1.98227 - 6.51*67 a + 2.0338 ß 

Finally, with the above approximations for the velocity profiles, 

equations (67) and (68) for the normal stress, and   Cp/2 = .16 a , the 

functions   f,  - f-in    can be evaluated. 

f1 ' a (A-8) 

f   -  %[los (a Rs) +2.1237] 

v.s 
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SdU 

■aüd7 

fc = .00625 + .881^27 a - .1*7831* ß - l.it535o a^ - .35791 ß' 

+ 1.39322 a ß 

f6 = S (.881*27 - 2.90700 a + 1.39322 ß) 

f7 - S (- .1*7831* + 1.39322 a  - .71582 ß) 

f« =  .16 a2 + (- .06568 - 2.0912 a + 1.1*1*901* ß + .9070 a2 

+ .71582 ß2 - 2.7861*1* a ß) |g 

f« = 

l10 

lll 

L12 

.00625 + .3899ii a - .13888 ß - .85368 a2 - .12911* ß2 

+ .61*1*66 a ß 

' §(.73085 - 2.21*056 a + .92132 ß) 

= S (- .381*79 + 1.02928 a - .1*5759 ß) 

= .16 a2 - {\\        + (- .03568 - 1.69003 a + .92228 ß 

^i..5 
+ 1.57389 a2 + .1*5759 ß2 - 1.95021* a ß) | g 
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APPENDIX B. COMPUTER PROGRAM 

The computer program for the solution of equations A-l, A-ii and 

A-5 is shown on the following pages, in Fortran language. It consists 

of a main program with three subroutines. The input variables with ex- 

planations are as follows: 

N    Total number of points for which U. is given (M . MP + 2) 

M   Number of printed values (after the initial values) 

MP   Number of calculations between printouts 

UZERO Value of U preceding X^^ (necessary for dU at X,) 

DELTAX Distance between calculation points (^X) 

ALI  Initial value (a,) 

DELI  Initial value ( S^ 

X    Initial value (X^ 

U(l)  Values of U. at X. (punched six to a card) 

The units of length (X, 8) and velocity (U) are arbitrary as long as 

they are consistent, except in calculating the Reynolds number. In the 

present calculations units of feet and ft./sec. are used. The Reynolds 

number for air is then 

R  - su 

" .00016 
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RUNGE-KUTTA MUMERICAL SOLUTION 

FOR TURBULENT BOUNDARY LAYERS 

DIMENSION U(200) 
READ 10, N. M, MP 

10        FORMAT (16) 
READ 15, UZERO, DELTAX, ALI, DELL, X 

15 FORMAT (F10.5) 
READ 20,  (U(I), I = 1, N) 

20 FORMAT (6P10.5) 
K = -MP 
PRINT 25 

25 FORMAT (56H1TURBULENT BOUNDARY LAYERS IN ADVERSE PRESSURE GRADIENTS, 
1 //U, 1HX, in, 1HU, 8X, 5HALPHA, 7 X, 5HDELTA, 8X, liHBETA, 7 X, 
2 5HTHETA, 8X, 1HH//) 

DU = (U( 2)-UZERO)/(2.* DELTAX) 
ALPHA = ALI 
DELTA = DELL 
UE = U(l) 
CALL PRIN(ALPHA, DELTA, UE, X) 
DO 30   J = 1, M 
K = K + MP 
DO 29 JJ = 1, MP 
CALL DER(ALPHA, DELTA, UE, DU, FA, FD) 
AKA = FA * DELTAX 
AKD = FD * DELTAX 
DEL = DELTA + AKD 
AL » ALPHA + AKA 
LL = K + JJ 
UE = U(LL + l) 
DU = (U(LL + 2) - U(LL))/(2. * DELTAX) 
CALL DER(AL, DEL, UE, DU, FA, PD) 
DELTA = DELTA + .5*(AKD + FD*DELTAX) 
ALPHA = ALPHA + .5*(AKA + FA^DELTAX) 

29 X = X + DELTAX 
CALL PRIN(ALPHA, DELTA, UE, X) 

30 CONTINUE 
CALL EXIT 
END 

SUBROUTINE TO COMPUTE DERIVATIVES 

SUBROUTINE DER(A, D, U, DU, FA, FD) 
T = LOGF(A*J*D/.00016) 
B = A*(T + 1.1237) - 1. 
F2 = D*(T + 2.1237) 
Fli = -A ■* D * DU / U 
F5 = .00625 + .88li27*A - .h783l4*B - l.li535*A*A - .35791*B*B 
1  + 1.39322*A*B 
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F6 = D * (.881^7 - 2.907*A + 1.39322*B) 
F? = D * (-.ii783ii + 1.39322*A - .7l582*B) 
F8A = .16 * A * A 
P8B = -.06568 - 2.0912*A + 1.1^90li*B + .907*A*A + .7l582*B*B 

1     - 2.7861ili*A*B 
F8 = P8A + P8B * D * DU/U 
F9 " .00625 + .3899l4*A - .13888*B - .85368*A*A - .l29]ij*B*B 

1    + .61ilt66*A*B 
F10 = D* (.73085 - 2.2it056*A + .92132*B) 
Fll = D * (-.381^79 + 1.02928*A - .Ii5759*B) 
F12A = .l6*A*A - TAU(U, D, A, B) 
F12B = -.03568 - 1.69003*A + .92228*B + 1.57389»A*A 

1     + .li5759»B*B - 1.9502ii*A*B 
F12 ■ F12A + F12B * D * DU/U 
Gl ■ A*F6*F11 + F2*F7*P9 - D*F5*F10 + D»F6*F9 - F2*F5*F11 - A*F7*?10 
G2 = Fii*F6*Fll + F2*F7*P12 - D*F8*F10 + D»F6*P12 - F2*F8*;'ll 

1     - Fli*F7*F10 
G3 ■ A*F8*F11 + Fli*F7*F9 - D»F5*F12 + D"F8*F9 - Pli*F5*Fll - A*F7*F12 
FD = G2 / Gl 
FA = G3 / Gl 
RETURN 
END 

SUBROUTINE TO PRINT VALUES 

SUBROUTIME PRIN(A, D, U; X) 
B = A * (LOGF(A*U»D/.00016) + 1.1237) - 1. 
P = .00638 + .881;7*A - .li793*B - l.l|527*A*A - .35786*B*B + 1.3927*A*B 
THETA = F * D 
H = (.00833 + .9221+8 A - .ii9229 B) / F 
PRINT 1, X, U, A, D, B, THETA, H 
FORMAT (F8.1i, ÜX, P8.3, la,  3(F8.5, 1|X), F8.6, la,  F6.3) 
RETURN 
END 

- 

FUNCTION SUBROUTIME TO COMPUTE TAU 

FUNCTION TAU(U, D, A, B) 
TAU = (2.*A - 1.5*B) * (.00lt/(L0GP(U * D/.00016) - 7.6) + .0013) 
RETURN 
END 



C-l 

APPENDIX C. CORRECTION FOR TRANSVERSE CURVATURE 

/ 

\ 

When the boundary layer grows along a body with trans- 

verse curvature, such as a cylinder, it is usually assumed 

that the ratio, S/r, is small. If this is not true, add- 

itional terms appear in the integral equations. 

If 5/r is not extremely large it seems reasonable to assume that 

equation (58) can be used for the velocity profiles. The correction for 

transverse curvature can then be written 

rä 
\ V—/' / 

fir = fi + ? ci 

where f. are the functions defined in Appendix A. 

(C-l) 

In the following derivation, the radius is assumed constant, as in 

the present experiments. The Reynolds normal stress is neglected, since 

it already is small and somewhat uncertain. 

In ■Ulis case, the momentum balance can be written 
y y 

a fU(1+Z)dy+        3 [      ^d^dy.iü.d+^X 
ax x       r'   ^      äx    J       x       r' ^       p       v       r'P 

K       2r/ p dx (C-2) 

Then, with the assumed velocity profiles, the corrections for trans- 

verse curvature can be evaluated. 

f5r = f5 + r' 2(-00013 + •2i*797 a - .llt957 ß - .2la82 a2 

- .085147 ß2 + .28170 a ß) 

f6r = f6 + f • 8^2l|797 - -^836^ 0 + .28170 ß) 

f7r " f7 + f ' & (" •lil957 + •28170 a " •l709i4 ß) 

f8r = f8 + I (- .OOOUO - .7l*U62 a + .1^900 ß + .li836lt a2 

+ .I709liß2 - .563iiOaß)ig 
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f9r " f9 r * 2(.00013 +.06056 a - .02776 ß - .09856 a2 

- .02276 ß2 + .09227 a ß) 

f10r = f10 + ? • S(-^711 - .29958 a + .l51i99ß) 

fllr = fll + r * 8 ^ •09019 + •l6619 a '  •09076 ^ 

f12r = f 12 " ? ("T)   + ? ^ •000110 " '^^ a + •27086 P 

+ .Ii020l* a2 + .13600 ß2 - .li5780o ß) ||j 
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